Hydrocolloids in Rice Noodle Production: Enhancing Texture, Cooking Quality, and Sustainability in Gluten-Free Formulations: A Review

Authors

DOI:

https://doi.org/10.70851/qdw8d910

Keywords:

Rice noodles, Hydrocolloids, Gluten-free noodle production, Food texture enhancement, Rice noodles texture

Abstract

This review explores the pivotal role of hydrocolloids in rice noodle production, focusing on their impact on texture, cooking quality, shelf life, and nutritional value. Hydrocolloids such as Konjac Glucomannan, guar gum, xanthan gum, carboxymethyl cellulose (CMC), Carrageenan, and Sodium alginate are critical for improving the structural integrity and sensory attributes of rice noodles, particularly in gluten-free formulations. Their ability to bind water, form gels, and interact with starches and proteins contributes to enhanced noodle elasticity, chewiness, and overall quality. The review also highlights recent technological advancements that have revolutionized hydrocolloid application in rice noodle production, including the use of modern processing equipment, innovative drying techniques, and biodegradable packaging solutions. These advancements not only optimize production efficiency but also align with sustainability trends, addressing consumer demand for environmentally friendly and health-conscious food products. However, challenges such as balancing hydrocolloid concentrations, economic viability, and consumer acceptance remain significant. As the global demand for gluten-free and nutritious products continues to rise, the potential for hydrocolloids in improving rice noodle production remains immense. Future research will be crucial in optimizing hydrocolloid formulations to further enhance the quality and sustainability of rice noodles.

Author Biographies

  • Lubowa Muhammad, Department of Food Innovation and Nutrition, Faculty of Agriculture and Environmental Sciences, Mountains of the Moon University, Fort-Portal, Uganda

    Lecturer

  • Mubajje Muhamad Shaban, Department of Food Science and Nutrition, Faculty of Agribusiness and Natural Resource Sciences, Islamic University in Uganda, Mbale, Uganda

    Lecturer

References

Amruth, P., Paul, P., M, R., Joy, J., Anandan, R., & Mathew, S. (2023). Influence of salt concentration on alkaline extracted refined kappa- carrageenan and its characterization. Journal of Applied Life Sciences International, 26(4), 13-20. https://doi.org/10.9734/jalsi/2023/v26i4610

Baek, J. and Lee, S. (2014). Functional characterization of brown rice flour in an extruded noodle system. Journal of the Korean Society for Applied Biological Chemistry, 57(4), 435-440. https://doi.org/10.1007/s13765-014-4102-4

Chaturvedi, S., Kulshrestha, S., Bhardwaj, K., Jangir, R. (2021). A Review on Properties and Applications of Xanthan Gum. In: Vaishnav, A., Choudhary, D.K. (eds) Microbial Polymers. Springer, Singapore. https://doi.org/10.1007/978-981-16-0045-6_4

Cheang, K., Chen, C., Chen, C., Liang, F., Shih, C., & Li, S. (2017). Effects of glucomannan noodle on diabetes risk factors in patients with metabolic syndrome: a double-blinded, randomized crossover-controlled trial. Journal of Food and Nutrition Research, 5(8), 622-628. https://doi.org/10.12691/jfnr-5-8-13

Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, Y., … & Han, Y. (2022). Recent advances in carrageenan-based films for food packaging applications. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1004588

Chen, Y., Youwang, Y., & Zhou, S. (2017). Role of lactic acid bacteria in the eating qualities of fermented rice noodles. Cereal Chemistry, 94(2), 349-356. https://doi.org/10.1094/cchem-07-16-0187-r

Choi, S. and Koh, B. (2017). Effects of annealing and removal of the water-soluble fraction of dry-milled rice flour on the texture of cooked rice noodles. Food and Nutrition Sciences, 08(10), 889-900. https://doi.org/10.4236/fns.2017.810064

Culeţu, A., Duță, D., Παπαγεωργίου, Μ., & Varzakas, T. (2021). The role of hydrocolloids in gluten-free bread and pasta; rheology, characteristics, staling and glycemic index. Foods, 10(12), 3121. https://doi.org/10.3390/foods10123121

Dahal, A., Sadiq, M., & Anal, A. (2020). Improvement of quality of corn and proso millet‐based gluten‐free noodles with the application of hydrocolloids. Journal of Food Processing and Preservation, 45(2). https://doi.org/10.1111/jfpp.15165

Denchai, N., Suwannaporn, P., Lin, J., Soontaranon, S., Kiatponglarp, W., & Huang, T. (2019). Retrogradation and digestibility of rice starch gels: the joint effect of degree of gelatinization and storage. Journal of Food Science, 84(6), 1400-1410. https://doi.org/10.1111/1750-3841.14633

Dong, G., Liu, L., Lin, Z., Zhu, L., Deng, J., Chen, J., … & Tong, L. (2021). Effects of red lentil protein addition on textural quality and starch digestibility of brown rice noodles. International Journal of Food Science & Technology, 56(12), 6656-6666. https://doi.org/10.1111/ijfs.15320

Dong, G., Lü, L., Zhou, S., Sun, X., Wang, L., Zhou, X., … & Tong, L. (2020). Effects of Lactobacillus plantarum Inoculum on the Fermentation Rate and Rice Noodle Quality. Journal of Oleo Science, 69(9), 1031-1041. https://doi.org/10.5650/jos.ess20003

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2010). Scientific opinion on the substantiation of health claims related to konjac mannan (glucomannan) and reduction of body weight (ID 854, 1556, 3725), reduction of post-prandial glycaemic responses (ID 1559), maintenance of normal blood glucose concentrations (ID 835, 3724), maintenance of normal (fasting) blood concentrations of triglycerides (ID 3217), maintenance of normal blood cholesterol concentrations (ID 3100, 3217), maintenance of normal bowel function (ID 834, 1557, 3901) and decreasing potentially pathogenic gastro-intestinal microorganisms (ID 1558) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 8(10), 1798. https://doi.org/10.2903/j.efsa.2010.1798

El Khoury, D., Goff, H. D., & Anderson, G. H. (2015). The role of alginates in regulation of food intake and glycemia: A gastroenterological perspective. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2012.700654

Fari, M., Rajapaksa, D., & Ranaweera, K. (2011). Quality characteristics of noodles made from selected varieties of sri lankan rice with different physicochemical characteristics. Journal of the National Science Foundation of Sri Lanka, 39(1), 53. https://doi.org/10.4038/jnsfsr.v39i1.2923

Fitzgerald, M. A., McCouch, S. R., & Hall, R. D. (2009). Not just a grain of rice: the quest for quality. Trends in plant science, 14(3), 133–139. https://doi.org/10.1016/j.tplants.2008.12.004

Fu, J., Brockman, N., & Wickes, B. (2021). Optimizing transformation frequency of cryptococcus neoformans and cryptococcus gattii using agrobacterium tumefaciens. Journal of Fungi, 7(7), 520. https://doi.org/10.3390/jof7070520.

Gasparre, N. and Rosell, C. (2019). Role of hydrocolloids in gluten free noodles made with tiger nut flour as non-conventional powder. Food Hydrocolloids, 97, 105194. https://doi.org/10.1016/j.foodhyd.2019.105194

González, L., Loubes, M., Bertotto, M., & Tolaba, M. (2022). Rice‐based noodle formulation: consumer preference and optimization by mixture design. Journal of Food Processing and Preservation, 46(12). https://doi.org/10.1111/jfpp.17153

Halim, Y., Angelina, B., & Handayani, R. (2023). Characteristics of dried noodle analogue made from sorghum flour and rice flour added with konjac glucomannan. Iop Conference Series Earth and Environmental Science, 1200(1), 012032. https://doi.org/10.1088/1755-1315/1200/1/012032

Hashimoto, K., Takuya, M., Norio, S., Yamazaki, N.,(2003). 2. Noodle quality improving agent and method for producing noodle. Patent.

Hormdok, R. and Noomhorm, A. (2007). Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT, 40(10), 1723-1731. https://doi.org/10.1016/j.lwt.2006.12.017

Hu, L., Xiao, Z., Chen, J., Cao, J., Iqbal, A., Abou-Elwafa, S., … & Hao, M. (2021). Texture and digestion properties of cooked rice and rice noodles. https://doi.org/10.21203/rs.3.rs-1059198/v1

Huang, H., Li, Y., Zeng, J., Cao, Y., Zhang, T., Chen, G., … & Wang, Y. (2023). Comparative quality evaluation of physicochemical and amylose content profiling in rice noodles from diverse rice hybrids in china. Agriculture, 13(1), 140. https://doi.org/10.3390/agriculture13010140

Huang, M., Xiao, Z., Chen, J., & Cao, F. (2021). Yield and quality of brown rice noodles processed from early-season rice grains. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-98352-7

Imeson, A. (2010). Food Stabilisers, Thickeners and Gelling Agents. Wiley-Blackwell. ISBN:9781405132671. http://doi.org/10.1002/9781444314724

Jin, H. (2024). Effects of kgm and degradation products on appetite regulation and energy expenditure in high-fat-diet mice via the adipocyte–hypothalamus axis. Journal of Agricultural and Food Chemistry, 72(28), 15765-15777. https://doi.org/10.1021/acs.jafc.4c03819

Kang, T., Yoon, M., Lee, J., & Choi, K. (2022). Branched chain length distribution of amylopectin in rice flour as a key attribute for determining the quality of extruded rice noodles. Journal of Food Processing and Preservation, 46(4). https://doi.org/10.1111/jfpp.16473

Koh, L. W., Kasapis, S., Lim, K. M., & Foo, C. W. (2009). Structural enhancement leading to retardation of in vitro digestion of rice dough in the presence of alginate. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2008.07.020

Kraithong, S. and Rawdkuen, S. (2020). Effects of food hydrocolloids on quality attributes of extruded red jasmine rice noodle. Peerj, 8, e10235. https://doi.org/10.7717/peerj.10235

Kraithong, S. and Rawdkuen, S. (2021). Quality attributes and cooking properties of commercial thai rice noodles. Peerj, 9, e11113. https://doi.org/10.7717/peerj.11113

Kraithong, S., Lee, S., & Rawdkuen, S. (2018). Effect of red jasmine rice replacement on rice flour properties and noodle qualities. Food Science and Biotechnology, 28(1), 25-34. https://doi.org/10.1007/s10068-018-0452-8

Kraithong, S., Lee, S., & Rawdkuen, S. (2018). The influence of hydrocolloids on the properties of organic red jasmine rice noodles, namely on antioxidant activity, cooking, texture, and sensory properties. Starch - Stärke, 71(1-2). https://doi.org/10.1002/star.201800145

Kraithong, S., Theppawong, A., Lee, S., & Huang, R. (2023). Understanding of hydrocolloid functions for enhancing the physicochemical features of rice flour and noodles. Food Hydrocolloids, 142, 108821. https://doi.org/10.1016/j.foodhyd.2023.108821

Leakhena, O., Thong-gnam, M., Jhoo, J., & Boonsupthip, W. (2021). Microstructural, dehydration and rehydration properties of rice starch granules in noodles as affected by water and oil addition using vacuum impregnation. Journal of Food Process Engineering, 44(8). https://doi.org/10.1111/jfpe.13763

Lee, S., Bae, I. Y., Jung, J. H., Jang, K. I., Kim, Y. W., & Lee, H. G. (2008). Physicochemical, textural and noodle‐making properties of wheat dough containing alginate. Journal of Texture Studies. https://doi.org/10.1111/j.1745-4603.2008.00149.x

Liao, Y. C., Chang, C. C., Nagarajan, D., Chen, C. Y., & Chang, J. S. (2021). Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered, 12(1), 3787–3801. https://doi.org/10.1080/21655979.2021.1946359

Li, C., You, Y., Chen, D., Gu, Z., Zhang, Y., Holler, T. P., Ban, X., Hong, Y., Cheng, L., & Li, Z. (2021). A systematic review of rice noodles: Raw material, processing method and quality improvement. Trends in Food Science & Technology, 107, 389-400. https://doi.org/10.1016/j.tifs.2020.11.009

Li, M., Zhu, K.-X., Guo, X.-N., Brijs, K. and Zhou, H.-M. (2014), Natural Additives in Wheat-Based Pasta and Noodle Products: Opportunities for Enhanced Nutritional and Functional Properties. Comprehensive Reviews in Food Science and Food Safety, 13: 347-357. https://doi.org/10.1111/1541-4337.12066

Li, S. (2024). Improvement in storage stability of fresh instant rice using non‐starch polysaccharides. International Journal of Food Science & Technology, 59(5), 2961-2970. https://doi.org/10.1111/ijfs.17021

Li, Y., Liang, J., Yang, M., Chen, J., & Han, B. (2015). Traditional chinese rice noodles: history, classification, and processing methods. Cereal Foods World, 60(3), 123-127. https://doi.org/10.1094/cfw-60-3-0515

Li, Y., Zheng, X., Chen, J., Liang, J., Yu, S., & Han, B. (2015). Lactic acid bacteria diversity of fresh rice noodles during the fermentation process, revealed by culture-dependent and culture-independent methods. Biotechnology & Biotechnological Equipment, 29(5), 915-920. https://doi.org/10.1080/13102818.2015.1051494

Liu, R., Yu, Z., Sun, Y., Tong, L., Liu, L., Wang, L., … & Zhou, S. (2021). Quality improvement effects of electrolyzed water on rice noodles prepared with semidry-milled rice flours. Food Science and Biotechnology, 30(6), 823-832. https://doi.org/10.1007/s10068-021-00923-x

Liu, Y., Chaiwanichsiri, S., & Laohasongkram, K. (2014). Physicochemical properties of flour recovered from broken rice noodles during production. International Journal of Food Science & Technology, 49(7), 1722-1728. https://doi.org/10.1111/ijfs.12481

Lu, Z., Peng, H., Cao, W., Tatsumi, E., & Li, L. (2008). Isolation, characterization and identification of lactic acid bacteria and yeasts from sourmifen, a traditional fermented rice noodle from china. Journal of Applied Microbiology, 105(3), 893-903. https://doi.org/10.1111/j.1365-2672.2008.03814.x

Lubowa, M., Yeoh, S. Y., & Easa, A. M. (2018). Textural and physical properties of retort processed rice noodles: Influence of chilling and partial substitution of rice flour with pregelatinized high-amylose maize starch. Food science and technology international = Ciencia y tecnologia de los alimentos internacional, 24(6), 476–486. https://doi.org/10.1177/1082013218766984

Lubowa, M., Yeoh, S.-Y., Varastegan, B. and Easa, A.M. (2021), Effect of pre-gelatinised high-amylose maize starch combined with Ca2+ -induced setting of alginate on the physicochemical and sensory properties of rice flour noodles. Int. J. Food Sci. Technol., 56: 1021-1029. https://doi.org/10.1111/ijfs.14754

Malahayati, N., Muhammad, K., Bakar, J., & Karim, R. (2014). Quality and fortificant retention of rice noodles as affected by flour particle size. Cereal Chemistry, 92(2), 211-217. https://doi.org/10.1094/cchem-01-14-0011-r

Mikuš, Ľ., Valík, Ľ., & Dodok, L. (2011). Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 59(5), 325-334. doi: 10.11118/actaun201159050325

Milani, J., & Maleki, G. (2012). Hydrocolloids in food industry. Food industrial processes–Methods and equipment, 2, 2-37.

Nagai, T., Takagi, A., Kai, N., Tanoue, Y., & Suzuki, N. (2019). Development of acceptable high‐quality noodles using nonglutinous rice cultivar akitakomachi flours. Cereal Chemistry, 96(6), 1112-1125. https://doi.org/10.1002/cche.10222

Nasruddin, N., Jamil, M., Zakaria, I., & Zubairi, S. (2018). Optimization of noodle formulation using commercialized empty fruit bunch palm oil carboxylmethyl cellulose (cmc) and flours with different protein content. Jurnal Teknologi, 80(5). https://doi.org/10.11113/jt.v80.10594

Nečas, J. and Bartošíková, L. (2013). Carrageenan: a review. Veterinární Medicína, 58(4), 187-205. https://doi.org/10.17221/6758-vetmed

Obadi, M., Li, Y., & Xu, B. (2023). Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. Journal of Food Science, 88, 3626–3648. https://doi.org/10.1111/1750-3841.16719

Ojukwu, M., Ofoedu, C., Seow, E., & Easa, A. (2020). Optimization of soy protein isolate, microbial transglutaminase and glucono‐δ‐lactone in gluten‐free rice noodles. Journal of the Science of Food and Agriculture, 101(9), 3732-3741. https://doi.org/10.1002/jsfa.11004

Ojukwu, M., Tan, J., & Easa, A. (2020). Cooking, textural, and mechanical properties of rice flour‐soy protein isolate noodles prepared using combined treatments of microbial transglutaminase and glucono‐δ‐lactone. Journal of Food Science, 85(9), 2720-2727. https://doi.org/10.1111/1750-3841.15357

Park, E., Kim, H., Shin, H., Jeon, Y., Kim, J., Kim, S., … & Kim, J. (2019). Change in textural properties, starch digestibility, and aroma of nonfried instant noodles by substitution of konjac glucomannan. Cereal Chemistry, 96(4), 784-791. https://doi.org/10.1002/cche.10180

Parvathy, U., Bindu, J., & Joshy, C. (2016). Development and optimization of fish‐fortified instant noodles using response surface methodology. International Journal of Food Science & Technology, 52(3), 608-616. https://doi.org/10.1111/ijfs.13313

Parry, J. (2009). Konjac Glucomannan. In A. Imeson (Ed.), Food Stabilisers, Thickeners and Gelling Agents (pp. 198-217).

Pegg, A. M. (2012). The application of natural hydrocolloids to foods and beverages. In D. Baines & R. Seal (Eds.), Natural food additives, ingredients and flavourings (pp. 175-196). Woodhead Publishing. https://doi.org/10.1533/9780857095725.1.175

Pinyo, J. (2024). Noodles made from blends of rice flour and pineapple stem starch: physical properties, cooking qualities, in vitro starch digestibility and sensory properties. International Journal of Food Science & Technology, 59(7), 5105-5117. https://doi.org/10.1111/ijfs.17249

Pongpichaiudom, A. and Songsermpong, S. (2018). Improvement of microwave-dried, protein-enriched, instant noodles by using hydrocolloids. Journal of Food Science and Technology, 55(7), 2610-2620. https://doi.org/10.1007/s13197-018-3182-2

Poonsri, T., Jafarzadeh, S., Ariffin, F., & Abidin, S. (2019). Improving nutrition, physicochemical and antioxidant properties of rice noodles with fiber and protein-rich fractions derived from cassava leaves. Journal of Food and Nutrition Research, 7(4), 325-332. https://doi.org/10.12691/jfnr-7-4-10

Puhin, K., Fukuoka, M., & Ratanasumawong, S. (2021). Effect of starch and non‐starch components on water migration, microstructure, starch retrogradation and texture of flat rice noodles made from different rice varieties. International Journal of Food Science & Technology, 56(7), 3344-3354. https://doi.org/10.1111/ijfs.14957

Qazi, I., Rakshit, S., & Tran, T. (2011). Effect of physico‐chemical properties of tropical starches and hydrocolloids on rice gels texture and noodles water retention ability. Starch - Stärke, 63(9), 558-569. https://doi.org/10.1002/star.201000140

Ramos, J. (2018). What is agar? SciTrends. https://doi.org/10.31988/scitrends.7968

Raungrusmee, S., Shrestha, S., Sadiq, M. B., & Anal, A. K. (2020). Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles. LWT, 126, 109279. https://doi.org/10.1016/j.lwt.2020.109279

Rękas, A. and Marciniak-Łukasiak, K. (2015). A multivariate study of the correlation between addition of maltodextrin, mcg, hpmc and psyllium on the quality of instant fried noodles. LWT, 62(1), 689-696. https://doi.org/10.1016/j.lwt.2014.12.027

Rungsardthong, V., Wutthisilanon, S., Thongkum, T., Suthtinium, T., Puttanlek, C., & Uttapap, D. (2021). Quality assessment of rice spaghetti made from jasmine rice flour and sweet potato flour supplemented with protein sources by direct extrusion. Journal of Food Processing and Preservation, 45(5). https://doi.org/10.1111/jfpp.15450

Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 47(6), 587-597.https://doi.org/10.1007/s13197-010-0162-6

Sandhu, K. and Kaur, M. (2010). Studies on noodle quality of potato and rice starches and their blends in relation to their physicochemical, pasting and gel textural properties. LWT, 43(8), 1289-1293. https://doi.org/10.1016/j.lwt.2010.03.003

Sangpring, Y., Fukuoka, M., & Ratanasumawong, S. (2015). The effect of sodium chloride on microstructure, water migration, and texture of rice noodle. LWT, 64(2), 1107-1113. https://doi.org/10.1016/j.lwt.2015.07.035

Satmalee, P. and Charoenrein, S. (2009). Acceleration of ageing in rice stick noodle sheets using low temperature. International Journal of Food Science & Technology, 44(7), 1367-1372. https://doi.org/10.1111/j.1365-2621.2009.01966.x

Seetapan, N., Leelawat, B., Limparyoon, N., & Yooberg, R. (2021). Effect of different extrusion methods on physicochemical properties and qualities of noodles based on rice flour. Food Science and Technology International, 29(3), 243-254. https://doi.org/10.1177/10820132211069260

Seo, M., Kang, B., Park, J., Kim, M., Lee, H., & Jeong, Y. (2012). Noodle development and its quality characteristics using fermented white and brown rice. Journal of Life Science, 22(10), 1378-1383. https://doi.org/10.5352/jls.2012.22.10.1378

Shere, P., Sahni, P., Devkatte, A., & Pawar, V. (2020). Influence of hydrocolloids on quality characteristics, functionality and microstructure of spinach puree–enriched instant noodles. Nutrition & Food Science, 50(6), 1267-1277. https://doi.org/10.1108/nfs-10-2019-0318

Singh, D., Viswakarma, P., & Kumar, B. (2021). A review of guar gum processing, properties, and its food applications. Asian Journal of Multidimensional Research, 10(10), 965-969. https://doi.org/10.5958/2278-4853.2021.00962.9

Srikaeo, K., Mingyai, S., & Sopade, P. (2011). Physicochemical properties, resistant starch content and enzymatic digestibility of unripe banana, edible canna, taro flours and their rice noodle products. International Journal of Food Science & Technology, 46(10), 2111-2117. https://doi.org/10.1111/j.1365-2621.2011.02724.x

Smith, A.M. and Miri, T. (2011). Alginates in Foods. In Practical Food Rheology (eds I.T. Norton, F. Spyropoulos and P. Cox). https://doi.org/10.1002/9781444391060.ch6

Sun, Q., Zhang, Z., Xiong, L., & Dai, L. (2013). Studies of rice flour gelation in the processing of rice noodles. Advanced Materials Research, 634-638, 1518-1522. https://doi.org/10.4028/www.scientific.net/amr.634-638.1518

Tahmouzi, S., Meftahizadeh, H., Eyshi, S., Mahmoudzadeh, A., Alizadeh, B., Mollakhalili-Meybodi, N., & Hatami, M. (2023). Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Food Science & Nutrition, 11(10), 4869–4897. https://doi.org/10.1002/fsn3.3383

Tan, C., Wei, H., Xitao, Z., Xu, C., Zhou, Y., & Peng, J. (2016). Soluble fiber with high water-binding capacity, swelling capacity, and fermentability reduces food intake by promoting satiety rather than satiation in rats. Nutrients, 8(10), 615. https://doi.org/10.3390/nu8100615

Tan, H., Tan, T., & Easa, A. (2018). The use of selected hydrocolloids to enhance cooking quality and hardness of zero‐salt noodles. International Journal of Food Science & Technology, 53(7), 1603-1610. https://doi.org/10.1111/ijfs.13742

Thuy N. M., Giau T. N., Tien V. Q., Hao H. V., Minh V. Q., Tai N. V. (2023). Quality improvement of noodles fortified with moringa leaf powder, konjac glucomannan, and acetylated starch. Acta Sci.Pol. Technol. Aliment. 22 (4), 467-476 https://doi.org/10.17306/J.AFS.2023.1128

Tong, L., Gao, X., Lin, L., Liu, Y., Zhong, K., Liu, L., … & Zhou, S. (2015). Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in china. Journal of Cereal Science, 62, 45-49. https://doi.org/10.1016/j.jcs.2014.12.007

Wandee, Y., Uttapap, D., Puncha‐arnon, S., Puttanlek, C., Rungsardthong, V., & Wetprasit, N. (2014). Enrichment of rice noodles with fibre‐rich fractions derived from cassava pulp and pomelo peel. International Journal of Food Science & Technology, 49(11), 2348-2355. https://doi.org/10.1111/ijfs.12554

Wandee, Y., Uttapap, D., Puncha‐arnon, S., Puttanlek, C., Rungsardthong, V., & Wetprasit, N. (2015). Quality assessment of noodles made from blends of rice flour and canna starch. Food Chemistry, 179, 85-93. https://doi.org/10.1016/j.foodchem.2015.01.119

Wang, C. (2024). Quality prediction of whole‐grain rice noodles using backpropagation artificial neural network. Journal of the Science of Food and Agriculture, 104(7), 4371-4382. https://doi.org/10.1002/jsfa.13324

Wang, H., Zhang, J., Han, L., Cao, J. J., Yang, J., Zhang, Y., & Hu, B. (2023). Calcium ion regulation of sodium alginate in pure buckwheat noodles shown by in vitro simulated digestion. Frontiers in Nutrition. https://doi.org/10.3389/fnut.2022.1105878

Weiner, M. (2014). Food additive carrageenan: part ii: a critical review of carrageenanin vivosafety studies. Critical Reviews in Toxicology, 44(3), 244-269. https://doi.org/10.3109/10408444.2013.861798

Williams, P. A., & Phillips, G. O. (Eds.). (2004). Gums and stabilisers for the food industry 12 (Vol. 12). Royal Society of Chemistry.

William, R., Blakemore, A., & Harpell, R. (2009). Carrageenan. In A. Imeson (Ed.), Food Stabilisers, Thickeners and Gelling Agents (pp. 73-94).

Wu, N., Ma, Z., Li, H., Tian, X., Fang, Y., & Tan, B. (2020). Nutritional and cooking quality improvement of brown rice noodles prepared with extruded rice bran. Cereal Chemistry, 98(2), 346-354. https://doi.org/10.1002/cche.10374

Wu, N., Tan, B., Li, S., Zhang, M., Tian, X., Zhai, X., … & Gao, K. (2018). Quality characteristics of extruded brown rice noodles with different amylose contents. Food Science and Technology Research, 24(2), 311-319. https://doi.org/10.3136/fstr.24.311

Xu, X. L., Meng, L., Gao, C., Cheng, W., Yang, Y., Shen, X., & Tang, X. (2023). Construction of starch-sodium alginate interpenetrating polymer network and its effects on structure, cooking quality and in vitro starch digestibility of extruded whole buckwheat noodles. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2023.108876

Xu, X., Ye, S., Zuo, X., & Fang, S. (2022). Impact of guar gum and locust bean gum addition on the pasting, rheological properties, and freeze–thaw stability of rice starch gel. Foods, 11(16), 2508. https://doi.org/10.3390/foods11162508

Yemenicioğlu, A., Farris, S., Türkyılmaz, M., & Güleç, Ş. (2019). A review of current and future food applications of natural hydrocolloids. International Journal of Food Science & Technology, 55(4), 1389-1406. https://doi.org/10.1111/ijfs.14363

Yu, A., Phoon, P., Ng, G., & Henry, C. (2020). Physicochemical characteristics of green banana flour and its use in the development of konjac‐green banana noodles. Journal of Food Science, 85(10), 3026-3033. https://doi.org/10.1111/1750-3841.15458

Zhang, G., Wang, W., Gao, S., Xu, M., Liu, M., Wang, X., … & LiHua, Z. (2021). Effects of konjac glucomannan on the long‐term retrogradation and shelf life of boiled wheat noodles. Journal of the Science of Food and Agriculture, 102(2), 644-652. https://doi.org/10.1002/jsfa.11393

Zhili, P., Ai, Z., Wang, T., Wang, Y., & Zhang, X. (2016). Effect of hydrocolloids on the energy consumption and quality of frozen noodles. Journal of Food Science and Technology, 53(5), 2414-2421. https://doi.org/10.1007/s13197-016-2217-9

Zoghi, A., Mirmahdi, R., & Mohammadi, M. (2020). The role of hydrocolloids in the development of gluten‐free cereal‐based products for coeliac patients: a review. International Journal of Food Science & Technology, 56(7), 3138-3147. https://doi.org/10.1111/ijfs.14887

Downloads

Published

2024-10-09 — Updated on 2025-04-15

Versions

Issue

Section

Review Article

Categories

How to Cite

Lubowa, M., Shin Yong, Y., & Muhamad Shaban, M. (2025). Hydrocolloids in Rice Noodle Production: Enhancing Texture, Cooking Quality, and Sustainability in Gluten-Free Formulations: A Review. Journal of Food Innovation, Nutrition, and Environmental Sciences, 1(1), 30-46. https://doi.org/10.70851/qdw8d910 (Original work published 2024)