Current Status of Biogas Technology Adoption in Uganda
DOI:
https://doi.org/10.70851/jfines.2025.2(4).212.224Keywords:
Renewable energy, waste management, biogas technology, rural energy access, clean cooking, sustainable developmentAbstract
Biogas technology offers a sustainable and renewable energy solution to Uganda’s challenges of energy poverty, environmental degradation, and inefficient agricultural waste management. Predominantly an agrarian nation with a high rural population dependent on traditional biomass fuels such as firewood and charcoal, Uganda stands to benefit significantly from adopting biogas. This review examines the current status of biogas technology adoption in Uganda by exploring its potential, national programs, adoption trends, barriers, recent innovations, gender and social considerations, and environmental and economic benefits of biogas use. The National Biogas Programme has played a pivotal role in promoting biogas through capacity-building and financing mechanisms; however, adoption remains limited by high installation costs, a lack of technical expertise, cultural perceptions, and policy gaps. Recent initiatives, including institutional biogas projects, private sector innovations, and gender-responsive approaches, demonstrate growing momentum and opportunities for scaling. The paper highlights the importance of integrating biogas into national energy, climate, and agricultural policies to foster inclusive and sustainable growth. Addressing financing constraints, enhancing technical capacity, and promoting gender and social inclusion are critical to unlocking the full benefits of biogas for Uganda’s clean energy transition and rural development.
References
Adhikari, B., Kang, S. S. Y., Dahal, A., Mshamu, S., Deen, J., Pell, C., ... & Bøjstrup, T. C. (2025). Acceptability of improved cook stoves-a scoping review of the literature. PLOS Global Public Health, 5(1), e0004042. https://doi.org/10.1371/journal.pgph.0004042
Adolf, K., & Uzorka, A. (2025). Effects of substrates on the efficiency of a monocrystalline solar panel. Scientific Reports, 15(1), 6667. https://doi.org/10.1038/s41598-025-90523-0
AEP. (2025). https://theelectricityhub.com/african-development-bank-approves-8-79-million-to-support-clean-cooking-initiatives/ accessed online: 26th July 2025
Aggarwal, R., Ayhan, S. H., Jakob, M., & Steckel, J. C. (2025). Carbon pricing and household welfare: evidence from Uganda. Environment and Development Economics, 30(1),1-25. https://doi.org/10.1017/S1355770X24000214
Ainebyona, B., Kendall, C., Flauro, A., John, T., Folta, E., & Perry, L. (2025). Understanding the motivations and barriers to adoption of environmentally sustainable activities around Kibale National Park, Uganda. Folia Primatologica, 1(aop),1-14. https://doi.org/10.1163/14219980-bja10048
Ajer, B., Ngare, L., & Macharia, I. (2024). Drivers of innovation in the agro-food micro, small and medium enterprises of Uganda. Journal of Agribusiness in Developing and Emerging Economies, 14(5), 979-996. https://doi.org/10.1108/JADEE-09-2022-0206
Ananno, A. A., Masud, M. H., Mahjabeen, M., & Dabnichki, P. (2021). Multi-utilisation of cow dung as biomass. In Sustainable bioconversion of waste to value added products (pp. 215-228). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61837-7_13
Atuheire, S. H. I. L. L. A. H., & Guya, E. (2021). Impact of Climate Variability on Cattle Milk Yield, Composition and Adoption Practice of Farmers in Mbarara District, South Western Uganda.
Bongomin, O., & Nziu, P. (2022). A critical review on the development and utilization of energy systems in Uganda. The Scientific World Journal, 2022(1), 2599467. https://doi.org/10.1155/2022/2599467
Byamukama, O., Ridwan, W. A., & Biney, M. A. (2025). Sustainability assessment of Uganda’s Mabira, Budongo, and Kibale forest reserves. Discover Environment, 3(1), 131.
Clemens, H., Bailis, R., Nyambane, A., & Ndung'u, V. (2018). Africa Biogas Partnership Program: A review of clean cooking implementation through market development in East Africa. Energy for Sustainable Development, 46, 23-31.
David, M., Uzorka, A., & Makeri, Y. A. (2022). Optimisation of a Renewable Energy System for Rural Electrification. Journal of Power and Energy engineering, 10(11), 1-15. https://doi.org/10.4236/jpee.2022.1011001
Edith, N. (2023). Analysis Of the Role of Renewable Energy Towards Successful Implementation of Sustainable Development Pillars” (Doctoral dissertation, Institute of Petroleum Studies-Kampala).
Elasu, J., Ntayi, J. M., Orobia, L. A., Adaramola, M. S., & Onyinyi, B. (2025). Transforming cooking practices in Uganda: transitioning toward clean energy solutions. Frontiers in Sustainability, 6, 1567398. https://doi.org/10.3389/frsus.2025.1567398
Fashina, A., Mundu, M., Akiyode, O., Abdullah, L., Sanni, D., & Ounyesiga, L. (2018). The drivers and barriers of renewable energy applications and development in Uganda: a review. Clean technologies, 1(1), 9-39.
Holm‐Nielsen, J. B., Mamur, A. P., & Masebinu, S. (2022). Socioeconomic Analysis of Renewable Energy Interventions: Developing Affordable Small‐scale Household Sustainable Technologies in Northern Uganda. Intelligent Data Mining and Analysis in Power and Energy Systems: Models and Applications for Smarter Efficient Power Systems, 319-341. https://doi.org/10.1002/9781119834052.ch16
International Energy Agency (IEA). (2023). Uganda Energy Transition Plan. Retrieved from: https://www.iea.org/reports/uganda-2023/executive-summary
Jima, T. T. (2025). ASSESSMENT OF BIOGAS TECHNOLOGY ADOPTION, IT'S POTENTIAL IN FUEL WOOD SAVING AND CARBON EMISSION REDUCTION IN GIRAR JARSO WOREDA, NORTH SHEWA ZONE OF OROMIA, ETHIOPIA. https://doi.org/10.20372/nadre:6215
Kakembo, F., & Kakembo, G. B. (2021). Developing the Circular Economy in Uganda: Prospects for Academia-Public-Private-Partnerships. Bonn-Rhein-Sieg University of Applied Sciences.
Ketuama, C. T., Mazancová, J., & Roubík, H. (2022). Impact of market constraints on the development of small-scale biogas technology in Sub-Saharan Africa: a systematic review. Environmental Science and Pollution Research, 29(44), 65978-65992. https://doi.org/10.1007/s11356-022-22262-y
Kibirige, D., Uzorka, A., Mustafa, M. M., & Ukagwu, K. J. (2024). Design and implementation of a charge controller for solar PV systems for emergency situations in health facilities in rural areas of Uganda. Engineering Science & Technology,326-342.https://doi.org/10.37256/est.5220244153
Kyayesimira, J., & Muheirwe, F. (2021). Health concerns and use of biomass energy in households: voices of women from rural communities in Western Uganda. Energy, Sustainability and Society, 11(1),42. https://doi.org/10.1186/s13705-021-00316-2
Lwiza, F., Mugisha, J., Walekhwa, P. N., Smith, J., & Balana, B. (2017). Dis-adoption of household biogas technologies in Central Uganda. Energy for Sustainable Development,37,124-132. https://doi.org/10.1016/j.esd.2017.01.006
Mak. (2025). https://caes.mak.ac.ug/. New Mak-CAES Project to Spur Green Growth in East Africa. Accessed online: 26th July 2025
Makepa, D. C., & Chihambakwe, Z. J. (2025). Carbon emissions reduction assessment via biogas production and resource recovery: the IPCC methodology. In Innovations in the Global Biogas industry (pp. 399-421). Woodhead Publishing.
Makumbi, D., Uzorka, A., & Ukagwu, J. K. (2025 a). Tabu Search Technique for Optimisation of Biomass Waste to Energy Technology. Open Journal of Optimization, 14(2), 63-92. https://doi.org/10.4236/ojop.2025.142005
Makumbi, D., Uzorka, A., & Ukagwu, J. K. (2025 b). Mathematical Modeling of the Biomass Waste to Energy Conversion Technology.International Journal of Research and Innovation in Applied Science (IJRIAS), 10(6), 1251-1263.https://doi.org/10.51584/IJRIAS.2025.10060095
Makumbi, D., Uzorka, A., & Ajiji Makeri, Y. (2022). Number of Cattle for Commercialising Electricity from Cattle Waste to Energy Technology. International Research Journal of Applied Sciences, Engineering and Technology, 8(10), 1–14. Retrieved from https://cirdjournals.com/index.php/irjaset/article/view/824(Published).
Margret, W., & Ann, A. (2025). Ugandans report inability to meet basic needs, look to government to improve their well-being.
McCord, A. I., Stefanos, S. A., Tumwesige, V., Lsoto, D., Meding, A. H., Adong, A., ... & Larson, R. A. (2017). The impact of biogas and fuelwood use on institutional kitchen air quality in Kampala, Uganda. Indoor Air, 27(6), 1067-1081.
Mirembe, A., Nakiirya, R., & Kansiime, M. K. (2024). Demonstration of the potential use of off-grid renewable energy in agricultural production in rural Uganda. Open Research Europe, 4(150), 150. https://doi.org/10.12688/openreseurope.17805.1
Muhamad, M. M., Kibirige, D., Uzorka, A., & John, U. K. (2022). Design and simulation of an inverter drive system with a display for a renewable energy system in the rural isolated communities of Uganda. Journal of Power and Energy Engineering, 10(12), 1-14. https://doi.org/10.4236/jpee.2022.1012001
Mukisa, P. J., Ketuama, C. T., & Roubík, H. (2022). Biogas in Uganda and the sustainable development goals: a comparative cross-sectional fuel analysis of biogas and firewood. Agriculture, 12(9), 1482. https://doi.org/10.3390/agriculture12091482
Murungi, H., Kiiza, N., Nkurunziza, G., Ssennono, V. F., & Aarakit, S. M. (2025). Why is there low grid electricity access in rural Uganda? Evidence from the Uganda National Household Survey. Energy Policy, 203, 114652.
Mwangu, A. R. (2024). SDG localization in Uganda: Prospects for climate change mitigation. In SDGs in Africa and the Middle East Region (pp. 723-752). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-17465-0_31
Nabaggala, M. (2023). Anaerobic co-digestion of Fecal Sludge and cabbage waste for biogas production: a bioinformatics approach (Doctoral dissertation, Makerere University).
Naluzze, G. E., & Ruppel, O. C. (2025, March). Country report for Uganda. In Legal Pathways to Sustainable Soil Management in Africa (pp. 647-696). Nomos Verlagsgesellschaft mbH & Co. KG.
Nanteza, I., Mukisa, N., Wabukala, B. M., Samanya, M., & Murungi, H. (2025). Economic and Environmental Assessment of Alternative Energy Cooking Technologies for Households in Uganda. Scientific African, e02840.https://doi.org/10.1016/j.sciaf.2025.e02840
NREP. (2025). https://nrep.ug/february-2025-newsletter/. Accessed online: 26th July 2025
Nyang, C. C., Nina, P. M., & Husseini, A. U. (2020). Valuing Biogas Production from Socio-Economic and Environmental Dimensions. African Journal of Economics and Sustainable Development, 3(1), 24-32.
Ogwang, I., Kasedde, H., Nabuuma, B., Kirabira, J. B., & Lwanyaga, J. D. (2021). Characterization of biogas digestate for solid biofuel production in Uganda. Scientific African, 12, e00735. https://doi.org/10.1016/j.sciaf.2021.e00735
Parliament. (2025).https://www.parliament.go.ug/news/3561/govt-proposes-law-use-clean-energy Accessed online: 26th July 2025
Robinson, B. L., Pemba, W., Ninsiima, V., Muhindo, G., Chiumia, A., Clifford, M. J., ... & Muvule, M. (2025). Is Bigger Better? Exploring Sustainable Delivery Models for Multi-Scale East African Smart Biogas Systems. Energies, 18(5), 1045. https://doi.org/10.3390/en18051045
Roopnarain, A., Ndaba, B., Bello-Akinosho, M., Bamuza-Pemu, E., Mukhuba, M., Nkuna, R., & Adeleke, R. (2021). Biogas technology in Africa: an assessment of feedstock, barriers, socio-economic impact and the way forward. In Biogas Production: From Anaerobic Digestion to a Sustainable Bioenergy Industry (pp. 415-445). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-58827-4_18
Somorin, T., Bodach, S., & Tripathi, M. (2025). From waste to value: key insights and lessons learned from biogas initiatives in the Global South. https://doi.org/10.5337/2025.202
TechnoServe. (2025, April 29). How Biogas Powers Regenerative Agriculture in Uganda: Evelyn’s Story. Retrieved from: https://www.technoserve.org/blog/biogas-powers-regenerative-agriculture-uganda/
Tereka, S., Pétursson, J. G., Byakagaba, P., & Ingólfsdóttir, A. H. (2025). Gender and socio-economic determinants of rural household adoption of clean energy practices in Uganda: Implications for energy transition pathways. Energy for Sustainable Development, 88, 101780. https://doi.org/10.1016/j.esd.2025.101780
Uganda Bureau of Statistics (UBOS). (2020). Uganda Annual Agricultural Survey 2018. Retreived from: https://www.ubos.org/wp-content/uploads/publications/04_2022AAS2019_Report.pdf
Uganda Bureau of Statistics (UBOS). (2024). National Livestock Census 2021 report. Retreived From: https://www.ubos.org/wp-content/uploads/publications/National-Livestock-Census-2021-Results-Dissemination-Presentation.pdf
Ukagwu, K. J., Kibirige, D., Uzorka, A., & Mustafa, M. M. (2022). Modelling and simulation of a renewable energy system for remote isolated health facilities in Uganda using Simulink. Am Acad Sci Res J Eng Technol Sci, 90(1), 277-299.
Uzorka, A., Bawa, M., Omar, A. M., Ounyesiga, L., Akiyode, O. O., & Olaniyan, A. O. (2025). Impact of dust on solar photovoltaic panel efficiency in Kampala Uganda. Energy Exploration & Exploitation, 01445987251361945. https://doi.org/10.1177/01445987251361945
Uzorka, A., Kibirige, D., Mustafa, M. M., & Ukagwu, J. K. (2025 a). Design and implementation of a photovoltaic system for health facilities in rural areas of Uganda. Discover Applied Sciences, 7(3), 197.https://doi.org/10.1007/s42452-025-06640-y
Uzorka, A., & Wonyanya, M. (2025). Design and performance evaluation of small-scale biogas digesters using locally available materials in rural Uganda. Renewable Energy, 246, 122994.
https://doi.org/10.1016/j.renene.2025.122994
Waiswa, D., Günlü, A., & Mat, B. (2021). Development opportunities for livestock and dairy cattle production in Uganda: A Review. Research Journal of Agriculture and Forestry Sciences, 9(1), 6063.
Wasajja, H., Champatan, V., Verhorst, R., Lindeboom, R. E., van Lier, J. B., & Aravind, P. V. (2024). Improving the Economic Feasibility of Small-Scale Biogas-Solid Oxide Fuel Cell Energy Systems through a Local Ugandan Biochar Production Method. Energies, 17(17), 4416. https://doi.org/10.3390/en17174416
World Bank. (2019). The Power of Dung: Lessons Learned from On-Farm Biodigester Programs in Africa (noting that cow dung is the most suitable feedstock for household biogas digesters). Retrieved from: https://documents1.worldbank.org/curated/en/468451557843529960/pdf/The-Power-of-Dung-Lessons-Learned-from-On-Farm-Biodigester-Programs-in-Africa.pdf
World Bank. (2023). Moving the Needle on Clean Cooking for All. Retrieved from: https://www.worldbank.org/en/results/2023/01/19/moving-the-needle-on-clean-cooking-for-all
Zhang, J., Liu, H., Wu, J., Chen, C., Ding, Y., Liu, H., & Zhou, Y. (2025). Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production. Bioresource Technology, 420, 132115.https://doi.org/10.1016/j.biortech.2025.132115
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 David Makumbi, Afam Uzorka, John Kelechi Ukagwu (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











