Fermenting Soymilk with Starter Culture Improves the Physicochemical, Proximate, and Sensory Properties of Nigerian Soy Curd (Beske)
DOI:
https://doi.org/10.70851/jfines.2025.2(4).225.231Keywords:
Plant-based food, Food fermentation, Soybean, Lactic acid bacteriaAbstract
This study investigated the effect of fermentation of soymilk with starter-culture on the physicochemical, microbiological, proximate and sensory properties of derived indigenous soy curd. The pH of starter culture-fermented (FSM) and uninoculated (USM) soymilks respectively decreased at different rates from 6.56 to 5.57 and 6.56 to 6.07 after 8 hours of fermentation. The total titratable acidity (lactic acid equivalent) of FSM sample is significantly higher (2.24 g/L) than that of USM (0.09 g/L). Greater proportions of carbohydrate (9.85±0.02%), protein (20.42±0.06%), fat (6.31±0.03%) and fiber (0.25±0.02%) were present in soy curd derived from starter culture-fermented soymilk (FSC) than in soy curd derived from uninoculated soymilk (USC). The sensory evaluation panelists preferred FSC to USC, in appearance, flavour, texture and overall acceptability. The color score was slightly higher for USC. The fermentation of soymilk with starter culture improved proximate properties and acceptability of derived soy curd. The starter culture improved the physicochemical properties of the soymilk used to produce the soy curd. Therefore, the development and use of starter culture may contribute to enhanced quality attributes of soy curd.
References
AOAC, Official method of analysis, in: Association of Official 464 Analytical Chemists,16th edition,11, Arlington, V.A.WashingtonD.C.USA,2012.
Allwood, J. G., Wakeling, L. T., & Bean, D. C. (2021). Fermentation and the microbial community of Japanese koji and miso: A review. Journal of Food Science, 86(6), 2194–2207. https://doi.org/10.1111/1750-3841.15773 DOI: https://doi.org/10.1111/1750-3841.15773
Cai, H., Dumba, T., Sheng, Y., Li, J., Lu, Q., Liu, C., Cai, C., Feng, F., & Zhao, M. (2021). Microbial diversity and chemical property analyses of sufu products with different producing regions and dressing flavors. LWT, 144, 111245. https://doi.org/10.1016/J.LWT.2021.111245 DOI: https://doi.org/10.1016/j.lwt.2021.111245
Chourasia, R., Phukon, L.C., Minhajul Abedin, M., Sahoo, D., & Kumar Rai, A. (2022). Production and characterization of bioactive peptides in novel functional soybean chhurpi produced using Lactobacillus delbrueckii WS4. Food Chemistry, 387, 132889. https://doi.org/10.1016/j.foodchem.2022.132889 DOI: https://doi.org/10.1016/j.foodchem.2022.132889
Elhalis, H., Chin, X. H., & Chow, Y. (2024). Soybean fermentation: Microbial ecology and starter culture technology. Critical Reviews in Food Science and Nutrition, 64(21), 7648–7670. https://doi.org/10.1080/10408398.2023.2188951 DOI: https://doi.org/10.1080/10408398.2023.2188951
He, R. Q., Wan, P., Liu, J., & Chen, D. W. (2020). Characterisation of aroma-active compounds in Guilin Huaqiao white sufu and their influence on umami aftertaste and palatability of umami solution. Food Chemistry, 321, 126739. https://doi.org/10.1016/J.FOODCHEM.2020.126739 DOI: https://doi.org/10.1016/j.foodchem.2020.126739
He, W., Chen, Z., & Chung, H. Y. (2022). Dynamic correlations between major enzymatic activities, physicochemical properties and targeted volatile compounds in naturally fermented plain sufu during production. Food Chemistry, 378, 131988. https://doi.org/10.1016/J.FOODCHEM.2021.131988 DOI: https://doi.org/10.1016/j.foodchem.2021.131988
Iwe MO, Linus-Chibuezeh N, AM A, V. O. (2017). Bread from Cassava-Wheat Composite Flours: Effect of Cassava Varieties, Flour Composite and Improvers on the Physical and Sensory Properties of Bread Loaves. Imperial J. Interdisciplinary Resear., 3(9).
Li, H., Yan, L., Wang, J., Zhang, Q., Zhou, Q., Sun, T., Chen, W. and Zhang, H. (2012). Fermentation characteristics of six probiotic strains in soymilk. Annals of Microbiology 62:1473–1483. DOI: https://doi.org/10.1007/s13213-011-0401-8
Li, M., Dong, H., Wu, D., Chen, H., Qin, W., Liu, W., Yang, W., & Zhang, Q. (2020). Nutritional evaluation of whole soybean curd made from different soybean materials based on amino acid profiles. Food Quality and Safety, 4(1), 41–50. https://doi.org/10.1093/FQSAFE/FYAA011 DOI: https://doi.org/10.1093/fqsafe/fyaa011
Li, X., He, Y., Yang, W., Mu, D., Zhang, M., Dai, Y., Zheng, Z., Jiang, S., & Wu, X. (2021). Comparative analysis of the microbial community and nutritional quality of sufu. Food Science & Nutrition, 9(8), 4117–4126. https://doi.org/10.1002/FSN3.2372 DOI: https://doi.org/10.1002/fsn3.2372
Liu, L., Chen, X., Hao, L., Zhang, G., Jin, Z., Li, C., Yang, Y., Rao, J., & Chen, B. (2022). Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Critical Reviews in Food Science and Nutrition, 62(7), 1971–1989. https://doi.org/10.1080/10408398.2020.1848792 DOI: https://doi.org/10.1080/10408398.2020.1848792
Obadina, A.O., Akinola, O.J., Shittu, T.A. and Bakare, H.A. (2013). Effect of natural fermentation on the chemical and nutritional composition of fermented soymilk nono. Nigerian Food Journal, 31(2):91-97. DOI: https://doi.org/10.1016/S0189-7241(15)30081-3
Ogunremi, O.R., Freimüller-Leischtfeld S. and Miescher-Schwenninger, S. (2022). MALDI-TOF MS profiling and exopolysaccharide production properties of lactic acid bacteria from Kunu-zaki - A cereal-based Nigerian fermented beverage. International Journal of Food Microbiology, 366, 109563. DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109563
Ogunremi, O.R., Ganz, G., Freimuller Leischtfeld, S. and Miescher Schwenninger, S. (2024). MALDI-TOF MS profiling and antifungal activity of lactic acid bacteria from kunu-aya, a tiger nut beverage of Nigeria. Food Bioscience, 61; 104581. 10.1016/j.fbio.2024.104581 DOI: https://doi.org/10.1016/j.fbio.2024.104581
Olawoye, B. and Gbadamosi, S. O. (2020). Sensory profiling and mapping of gluten-free cookies made from blends Cardaba banana flour and starch. Journal of Food Processing and Preservation, 44(9), e14643 DOI: https://doi.org/10.1111/jfpp.14643
Poysa, V. and Woodrow, L. (2002). Stability of soybean seed composition and its effect on soymilk and tofu yield and quality. Food Research International, 35(4), 337–345. https://doi.org/10.1016/S0963-9969(01)00125-9 DOI: https://doi.org/10.1016/S0963-9969(01)00125-9
Raji, A.O., Oluwanisola, R.M., Oyebanji, O.M. and Sunmonu, B. A. (2023). Nutrients composition, sensory properties and storage stability of processed Nigerian soy cheese (Beske). Measurement: Food 10; 100088 DOI: https://doi.org/10.1016/j.meafoo.2023.100088
Sanjukta, S., & Rai, A. K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology, 50, 1–10. https://doi.org/10.1016/J.TIFS.2016.01.010 DOI: https://doi.org/10.1016/j.tifs.2016.01.010
Singh, S., Husain, T., Kushwaha, B. K., Suhel, M., Fatima, A., Mishra, V., Singh, S. K., Bhatt, J. A., Rai, M., Prasad, S. M., Dubey, N. K., Chauhan, D. K., Tripathi, D. K., Fotopoulos, V., & Singh, V. P. (2021). Regulation of ascorbate-glutathione cycle by exogenous nitric oxide and hydrogen peroxide in soybean roots under arsenate stress. Journal of Hazardous Materials, 409, 123686. https://doi.org/10.1016/J.JHAZMAT.2020.123686 DOI: https://doi.org/10.1016/j.jhazmat.2020.123686
Sirilun, S., Sivamaruthi, B. S., Kesika, P., Peerajan, S., & Chaiyasut, C. (2017). Lactic acid bacteria mediated fermented soybean as a potent nutraceutical candidate. Asian Pacific Journal of Tropical Biomedicine, 7(10), 930–936. https://doi.org/10.1016/j.apjtb.2017.09.007 DOI: https://doi.org/10.1016/j.apjtb.2017.09.007
Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q., Mayo, B., Westerik, N., & Hutkins, R. (2020). Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety, 19(1), 184–217. https://doi.org/10.1111/1541-4337.12520 DOI: https://doi.org/10.1111/1541-4337.12520
Wang, X., Wang, C., Hu, F., Yu, M., Zhu, X., Wu, D., Jiang, S., Tian, J., & Chang, P. (2023). Dynamic monitoring and correlation analysis of flavour quality and bacterial community during sufu fermentation. International Journal of Food Science and Technology, 58(10), 5037–5048. https://doi.org/10.1111/IJFS.16602 DOI: https://doi.org/10.1111/ijfs.16602
Xu, D., Wang, P., Zhang, X., Zhang, J., Sun, Y., Gao, L., & Wang, W. (2020). High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food. Food Microbiology, 86, 103340. https://doi.org/10.1016/J.FM.2019.103340 DOI: https://doi.org/10.1016/j.fm.2019.103340
Yao, D., Xu, L., Wu, M., Wang, X., Wang, K., Li, Z., & Zhang, D. (2021). Microbial Community Succession and Metabolite Changes During Fermentation of BS Sufu, the Fermented Black Soybean Curd by Rhizopus microsporus, Rhizopus oryzae, and Actinomucor elegans. Frontiers in Microbiology, 12, 665826. https://doi.org/10.3389/FMICB.2021.665826/BIBTEX DOI: https://doi.org/10.3389/fmicb.2021.665826
Zong, L., Lu, M., Wang, W., Wa, Y., Qu, H., Chen, D., Liu, Y., Qian, Y., Ji, Q., Gu, R. (2022). The quality and flavor changes of different soymilk and milk mixtures fermented products during storage. Fermentation, 8, 668. DOI: https://doi.org/10.3390/fermentation8120668
Downloads
Published
License
Copyright (c) 2025 Yetunde Olorunleke, Azeezat Olawumi Oladipupo, Olamide Omolafe Ogunremi, Babatunde Olawoye, Omotade Richard Ogunremi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











