Efficacy Evaluation of Jania rubens Extract Against Four Pathogenic Strains Associated with Foodborne Disease in Iran

Authors

DOI:

https://doi.org/10.70851/jfines.2025.2(1).20.40

Keywords:

Optimization, Red algae, Soxhlet extraction method, Antimicrobial, Food borne diseases, Food borne pathogens

Abstract

This study evaluated the antimicrobial properties of Jania rubens algae extract, obtained via Soxhlet extraction, against food spoilage and pathogenic bacteria. Using response surface methodology and the Box-Behnken design, the research optimized extraction parameters, including solvent type, solvent-to-algae ratio, and extraction duration. Antimicrobial efficacy was assessed through the zone of inhibition (ZOI), Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) against Escherichia coliSalmonella enteritidisStaphylococcus aureus, and Bacillus cereus. Results showed MIC and MBC values for E. coli ranged from 0.32–1.5 and 2–3, respectively; for S. enteritidis, 0.98–1.9 and 2.5–3.5; for S. aureus, 0.4–1.5 and 0.8–2.8; and for B. cereus, 0.36–1.35 and 0.85–1.85. Optimal extraction conditions included acetone as the solvent, a 5:1 solvent-to-algae ratio, and extraction durations of 2 or 6 hours. The algae extract significantly extended the lag phase and reduced bacterial growth rates, with effects intensifying at higher concentrations. The study concludes that Jania rubens extract, particularly under optimized Soxhlet extraction conditions, exhibits potent antibacterial activity, making it a promising natural antimicrobial agent for food preservation.

References

Arica, Ş. Ç., Ozyilmaz, A. and Demirci, S., 2017. A study on the rich compounds and potential benefits of algae: A review. Pharm. Innov, 6, 42-51. http://www.thepharmajournal.com/

Babii, C., Bahrin, L., Neagu, A. N., Gostin, I., Mihasan, M., Birsa, L. and Stefan, M., 2016. Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids. Journal of Applied Microbiology, 120, 630-637. https://doi.org/10.1111/jam.13048

Bag, A., Bhattacharyya, S. K., Pal, N. K. and Chattopadhyay, R. R., 2012. In vitro antibacterial potential of Eugenia jambolana seed extracts against multidrug-resistant human bacterial pathogens. Microbiological research, 167, 352-357. https://doi.org/10.1016/j.micres.2012.02.005

Buch, T. and Rollová, B., 2019. Bacterial Growth Curve by OD600 and SoloVPE. Biofactory Competence Centre. https://www.semanticscholar.org/paper/Bacterial-growth-curve-by-OD-600-and-SoloVPE-Buch-Rollov%C3%A1/9e6381e27482461e3e8ad12e6dddcda829042e18?utm_source=direct_link

Chenniappan, S., Durairaj, G. and Kumaran, A. V., 2021. Antibacterial activity of Jania rubens from Gulf of Mannar, south coast of India. Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)], 12, 451-458. http://doi.org/10.56042/ijnpr.v12i3.28856

De Marco, E. R., Steffolani, M. E., Martínez, C. S. and León, A. E., 2014. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-food science and technology, 58, 102-108. https://doi.org/10.1016/j.lwt.2014.02.054

Dixit, D. and Reddy, C., 2017. Non-targeted secondary metabolite profile study for deciphering the cosmeceutical potential of red marine macro alga Jania rubens—An LCMS-based approach. Cosmetics, 4, 45. https://doi.org/10.3390/cosmetics4040045

Drishya, P. and Medo, M. R., 2022. Antibacterial potential of selected seaweed Sargassum wightii Greville ex J. Agardh. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.085

Food and Nations, A. O. o. t. U., 2018. The global status of seaweed production, trade and utilization. Globefish Research Programme, 124, 120. https://openknowledge.fao.org/handle/20.500.14283/ca1121en

Gouveia, L., Batista, A. P., Miranda, A., Empis, J. and Raymundo, A., 2007. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative food science & emerging technologies, 8, 433-436. https://doi.org/10.1016/j.ifset.2007.03.026

Hajimehdipoor, H., Khanavi, M., Shekarchi, M., Abedi, Z. and Pirali Hamedani, M., 2009. Investigation of the best method for extraction of phenolic compounds from Echinaceae purpurea L.(Moench). Journal of Medicinal Plants, 8, 145-152. http://jmp.ir/article-1-358-fa.html

Hedges, A. J., 2002. Estimating the precision of serial dilutions and viable bacterial counts. International journal of food microbiology, 76, 207-214. https://doi.org/10.1016/s0168-1605(02)00022-3

Ismail-Ben Ali, A., El Bour, M., Ktari, L., Bolhuis, H., Ahmed, M., Boudabbous, A. and Stal, L., 2012. Jania rubens-associated bacteria: molecular identification and antimicrobial activity. Journal of applied phycology, 24, 525-534. https://doi.org/ 10.1007/s10811-011-9758-0.

Ismail, A., El Bour, M., Ktari, L. and Boudabbous, A., 2018. Antimicrobial potential of jania rubens extracts and epiphytic bacteria. https://www.researchgate.net/publication/327968229

Jahangirian, H., Haron, M. J., Shah, M. H., Abdollahi, Y., Rezayi, M. and Vafaei, N., 2013. Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Digest Journal of Nanomaterials & Biostructures, 8, 1263-1270. https://WOS:000327816300034

Karabay‐Yavasoglu, N. U., Sukatar, A., Ozdemir, G. and Horzum, Z., 2007. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21, 153-156. https://doi.org/10.1002/ptr.2045

Karthick, M., Balachandar, M., Raja, M. and Raj, R. A., 2019. Antibacterial activity of red alga Amphiroa anceps (Rhodophyceae: Lithophyllaceae) against selected human pathogens. Sci. Acta Xaver, 10, 15-19. https://www.researchgate.net/publication/350782810_Antibacterial_Activity_Of_Red_Alga_Amphiroa_anceps_Rhodophyceae_Lithophyllaceae_Against_Selected_Human_Pathogens

Kavita, K., Singh, V. K. and Jha, B., 2014. 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological research, 169, 301-306. https://doi.org/10.1016/j.micres.2013.07.002

Khan, S., Ahmad, N., Fazal, H., Saleh, I. A., Abdel-Maksoud, M. A., Malik, A., AbdElgayed, G., Jalal, A., Rauf, K. and Ali, L., 2024. Exploring stevioside binding affinity with various proteins and receptors actively involved in the signaling pathway and a future candidate for diabetic patients. Frontiers in Pharmacology, 15, 1377916. https://doi.org/ 10.3389/fphar.2024.1377916

Khezri Ahmad Abad, M., Reza i, M. and Zolfaghari, M., 2016. Studying the possibility of using the extract of Entromorpha intestinalis in order to control some food-borne pathogens. Journal of food science and technology(Iran), 13, 81-91. http://fsct.modares.ac.ir/article-7-4406-fa.html

Lazzam, S. K. and Ayal, A. W. R. A., 2024. Determination of Bioactive Compounds and Antibacterial of The Brown algae Sargassum sp. Journal of Education for Pure Science-University of Thi-Qar, 14. https://doi.org/10.32792/utq/utjsci/v10i2

Maharini, F. S., Nambiar, N. and Poddar, S., 2022. Extract of Gigartina sp for Antibacterial Activities on Escherichia coli and Staphylococcus sp. Research Journal of Pharmacy and Technology, 15, 4801-4806. http://dx.doi.org/10.52711/0974-360X.2022.00806

Mashhadinejad, A., Zamani, H. and Sarmad, J., 2016. Evaluation of antimicrobial activity of different extracts of microalga, Chlorella sp., grown under autotrophic condition. Aquatic Physiology and Biotechnology, 4, 17-32. https://dorl.net/dor/20.1001.1.23453966.1395.4.1.2.9

Matos, R. C., Bessa, M., Oliveira, H., Gonçalves, F., de Lourdes Pereira, M. and Nunes, B., 2013. Mechanisms of kidney toxicity for chromium-and arsenic-based preservatives: Potential involvement of a pro-oxidative pathway. Environmental toxicology and pharmacology, 36, 929-936. https://doi.org/10.1016/j.etap.2013.08.006

Mendes, M., Pereira, R., Pinto, I. S., Carvalho, A. and Gomes, A., 2013. Antimicrobial activity and lipid profile of seaweed extracts from the North Portuguese Coast. International Food Research Journal, 20, 3337-3345. http://hdl.handle.net/10400.14/14303

Mohammadi, E., Shabanpour, B. and Kordjazi, M., 2016. Evaluation of antioxidant and antibacterial activity of brown seaweed Iyengaria stellata collected from Persian Gulf. Aquatic Physiology and Biotechnology, 4, 43-57. https://dorl.net/dor/20.1001.1.23453966.1395.4.3.3.4

Mohammed, S., 2023. Assessment of Antimicrobial Activity and Antioxidant Properties of Three Brown Seaweeds, Sargassum polycystum, Turbinaria triquitra and Cystoseria myrica. Egyptian Academic Journal of Biological Sciences, H. Botany, 14, 19-28. http://dx.doi.org/10.21608/EAJBSH.2023.281096

Moubayed, N. M., Al Houri, H. J., Al Khulaifi, M. M. and Al Farraj, D. A., 2017. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi journal of biological sciences, 24, 162-169. https://doi.org/10.1016/j.sjbs.2016.05.018

Ranga Rao, A. and Ravishankar, G., 2018. Algae as source of functional ingredients for health benefits. Agricultural Research & Technology, 14, 555911. http://dx.doi.org/10.19080/ARTOAJ.2018.14.555911

RasGele, P. and KaymaK, F., 2013. EffEcts of food preservative natamycin on liver enzymes and total protein in Mus Musculus. Bulgarian Journal of Agricultural Science, 19, 298-302. https://www.researchgate.net/publication/236154607

Rathee, P., Sehrawat, R., Rathee, P., Khatkar, A., Akkol, E. K., Khatkar, S., Redhu, N., Türkcanoğlu, G. and Sobarzo-Sánchez, E., 2023. Polyphenols: natural preservatives with promising applications in food, cosmetics and pharma industries; problems and toxicity associated with synthetic preservatives; impact of misleading advertisements; recent trends in preservation and legislation. Materials, 16, 4793. https://doi.org/10.3390/ma16134793

Ravi, S., Banu, V. and Nawas, P. M. A., 2019. Profiling of phytochemical, antioxidant properties and antimicrobial activity of marine red seaweed Jania rubens. Methods, 8, 11-12. https://www.semanticscholar.org/paper/Profiling-of-phytochemical%2C-antioxidant-properties-Ravi-Banu/df8045cd751c80e746ce34585a63172576fdf837

Sabbagh, S. K., Saeedi, S., Dehbashi, Z. and Mazaheri Naeieni, M., 2015. Antimicrobial Activity of Ethanolic Extract of Black Pepper (Piper Nigrum) and March (Peganum Harmala) Against Antibiotic-resistant of Staphylococcus Aureus Strains. Journal of Sabzevar University of Medical Sciences, 22, 854-861. https://sid.ir/paper/81858/fa

Safari, R., Abtahi, B. and Tayebi, P., 2011. The study of inhibitory effects of extract from Chlorella vulgaris on Bacillus subtilis in culture media. Journal of Innovation in food science and technology, 3, 27-35. https://www.magiran.com/p913594

Shahnia, M. and Khaksar, R., 2013. Antimicrobial effects and determination of minimum inhibitory concentration (MIC) methods of essential oils against pathogenic bacteria. Iranian Journal of Nutrition Sciences & Food Technology, 7, 949-955. http://nsft.sbmu.ac.ir/article-1-1093-en.html

Shariat, M., Lakzadeh, L. and Mirmohammady, M., 2017. Comparison of Spectrophotometry and HPLC methods in measurement of potassium sorbate in industrial fruit juices. https://sanad.iau.ir/en/Article/968984?FullText=FullText

Sharifian, S., Shahbanpour, B., Taheri, A. and Kordjazi, M., 2019. Effects of different solvents on the phenolic compounds and antioxidant properties of brown seaweeds, Nizimuddinia zanardinii (Schiffner) PC Silva and Padina australis Hauck. Journal of Aquatic Ecology, 8, 76-86. http://jae.hormozgan.ac.ir/article-1-758-fa.html

Sheikh, H., El-Naggar, A. and Al-Sobahi, D., 2018. Evaluation of antimycotic activity of extracts of marine algae collected from Red Sea Coast, Jeddah, Saudi Arabia. Journal of Biosciences and Medicines, 6, 51-68. https://doi.org/10.4236/jbm.2018.64004

Toma, J. J. and Aziz, F. H., 2023. Antibacterial activity of three algal genera against some pathogenic bacteria. Baghdad Science Journal, 20, 0032-0032. https://dx.doi.org/10.21123/bsj.2022.6818

WHO, World Health Organization., 2024. World health statistics 2024: monitoring health for the SDGs, Sustainable Development Goals, ISBN 978-92-4-009470-3 (electronic version) (https://www.who.int/data/gho/publications/world-health-statistics

Wijesekara, I., Pangestuti, R. and Kim, S.-K., 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate polymers, 84, 14-21. http://dx.doi.org/10.1016/j.carbpol.2010.10.062

Zamani Kochesfehani, M. H., Ataei Jaliseh, S. and Zamani Kochesfehani, M., 2021. Investigation of antibacterial effect of red algae Gracilaria gracilis extract. Aquatic Physiology and Biotechnology, 8, 115-130. https://doi.org/10.22124/japb.2021.15725.1369

Zobeidy Nezhad, M., Ghaffari, M. and Taheri, A., 2018. The investigation of anti-bacterial activity of methanolic extract of brown algae (Padina gymnospora) against some gram negative bacteria. Experimental animal Biology, 7, 17-25. https://www.magiran.com/p1882527

Downloads

Published

2025-03-13 — Updated on 2025-04-15

Versions

Issue

Section

Original Research Paper

Categories

How to Cite

Hamidkhani, N., Mooraki, N., Sedaghati, M., & Talebi Haghgo, M. (2025). Efficacy Evaluation of Jania rubens Extract Against Four Pathogenic Strains Associated with Foodborne Disease in Iran. Journal of Food Innovation, Nutrition, and Environmental Sciences, 2(1), 20-40. https://doi.org/10.70851/jfines.2025.2(1).20.40 (Original work published 2025)